# Climate Mitigation, Waste Recycling, and Soil Health for NYS Economic Development using Pyrolysis

### Johannes Lehmann Cornell University

Cornell Faculty: Betta Fisher (MAE) Jillian Goldfarb (BEE) Ruth Richardson (CEE) Jeffrey Tester (ChemE) Dominic Woolf (SIPS) Fengqi You (CEE) Collaborations with Syracuse University, RIT, CUNY, SUNY ESF Private Companies Farmers NGO

## **Biochar as a Soil Amendment**

### **Carbon Product**

Carbon persistence Surface area and functional groups Electron shuttle and fused arom.

Soil Health GHG reduction + C sequestration Pollution reduction by leaching and gas emissions Soil remediation Inoculant carriers Signaling (plant-plant; plant-MO)

#### **Nutrient Product**

Nutrient enrichment Nutrient availability Sterilization Denaturing of pollutants

Fertilization Pollution avoidance GHG reduction (+ C sequestration)



### **Global Supplies and New York Phosphate**



**Cornell University** 

Cordell et al. 2011, *Sustainability* 3, 2027-2049 Ketterings and Czymmek K 2012 *What's Cropping Up* 

# **Recycling of Dairy Manure using Pyrolysis**

No contaminants (heavy metal, PAH, PCB, dioxin/furans, etc.) No pollutants from manure (pathogens, hormones, antibiotic)

### 100 kg liquid dairy manure 0.1% phosphorus

4 kg biochar 2% phosphorus





#### www.pyrolysis.cals.cornell.edu



Enders et al., 2019, Soil Sci Soc Am. Ann. Meeting



**Cornell University** 

# **Recycling of Dairy Manure using Pyrolysis**

Value as ingredient of potting mix: appr. \$1,900 ton<sup>-1</sup> 83% from C value (as potting mix) Maximum Potential (NYS per year): \$272M value for farmer \$1.3B value for retail \$114M reduced transportation \$4-15M reduced GHG (\$20-80/t CO<sub>2</sub>e)

#### Nutrients better available to plants, but less leachable!

| Element     | Manure    |           | Biochar   |           | Change due to pyrolysis |           |
|-------------|-----------|-----------|-----------|-----------|-------------------------|-----------|
|             | Leachable | Available | Leachable | Available | Leachable               | Available |
|             | mg/kg     | mg/kg     | mg/kg     | mg/kg     |                         |           |
| Phosphorous | 409.8     | 4505.9    | 35.8      | 5088.2    | -91%                    | 13%       |
| Potassium   | 7372.8    | 8114.2    | 9399.9    | 12891.2   | 27%                     | 59%       |
| Calcium     | 31257.5   | 80671.0   | 33720.8   | 142276.8  | 8%                      | 76%       |
| Magnesium   | 2785.9    | 6578.6    | 291.1     | 7654.5    | -90%                    | 16%       |



**Cornell University** 

Enders et al., 2019, Soil Sci Soc Am. Ann. Meeting

# **Dairy Manure Processing-Life Cycle Analysis**



# Alternatives to storage and direct soil application of dairy manure digestate





Almeida et al., 2019, in preparation

# **Poultry Litter Processing**





Bora et al., 2019, in preparation

### **Ammonia Capture with Biochar**





**Cornell University** 

Hestrin et al, 2019, *Nature Communications* 10, 664 Krounbi et al., submitted

### **Biochar Management in NYS – where to next**





**Cornell University** 

# **Cornell Pyrolysis Facility – NYS Resource**



#### www.pyrolysis.cals.cornell.edu



