Enabling Biomass Utilization

Cornell University July 16, 2018

Jesse Q. Bond Associate Professor Biomedical and Chemical Engineering Syracuse University

Research Overview

• Core Discipline: Heterogeneous Catalysis

- Inorganic Materials
- Catalytic Kinetics
- Physical Chemistry
- Applied Focus: Resource Sustainability
 - Large scale industrial alternatives to petroleum
 - Abundant biomass
 - [Large Scale] Bio-based fuels and chemicals
 - How do we utilize biomass economically?
 - How do we process sugar and lignin?

Research Overview

• Core Discipline: Heterogeneous Catalysis

- Inorganic Materials
- Catalytic Kinetics
- Physical Chemistry
- Find materials to facilitate difficult chemistry!
- Applied Focus: Resource Sustainability
 - Large scale industrial alternatives to petroleum
 - Abundant biomass
 - [Large Scale] Bio-based fuels and chemicals
 - How do we utilize biomass economically?
 - How do we process sugar and lignin?

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically

Hydrocarbons

Hexane (C_6H_{14})

Hexane (C_6H_{14})

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically
 - Solids handling and depolymerization?

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically
 - Need to find new catalysts so that we can...

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically
 - Form new C-C bonds (build larger molecules)

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically
 - Remove oxygen (improve stability and energy density).

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically
 - But chemistries are nontrivial and.....

- Biomass Processing (Lignocellulose)
 - Making industrial commodities from sugars and/or lignin
 - Hydrocarbon Fuels are difficult to source biologically
 - But chemistries are nontrivial and.....

Research Overview

• Core Discipline: Heterogeneous Catalysis

- Inorganic Materials -
- Catalytic Kinetics
- Physical Chemistry
- Find materials to facilitate difficult chemistry!
- Applied Focus: Resource Sustainability
 - Large scale industrial alternatives to petroleum
 - Abundant biomass
 - [Large Scale] Bio-based fuels and chemicals
 - How do we utilize biomass economically?
 - How do we process sugar and lignin?
 - How can we resolve these challenging economics?
 - Especially to allow near-term development?

- Find products that do not need H₂ input
 - Bio-char is a good example; high value, low cost to manufacture!

- Find products that do not need H₂ input
 - Bio-char is a good example; high value, low cost to manufacture!
- Find products that are difficult to source from oil
 - Oxygenated chemicals
 - Alkanes are hard to activate...

Maleic Anhydride

- Find products that do not need H₂ input
 - Bio-char is a good example; high value, low cost to manufacture!
- Find products that are difficult to source from oil
 - Oxygenated chemicals
 - Alkanes are hard to activate...
- Hydraulic Fracturing has disrupted supply chain
 - New opportunities for biomass!

- Find products that do not need H₂ input
 - Bio-char is a good example; high value, low cost to manufacture!
- Find products that are difficult to source from oil
 - Oxygenated chemicals
 - Alkanes are hard to activate...
- Hydraulic Fracturing has disrupted supply chain
 - New opportunities for biomass!
 - The Butadiene dilemma
 - Supply is becoming constrained...

Butadiene